Regulation of Tight Junctions in Upper Airway Epithelium

نویسندگان

  • Takashi Kojima
  • Mitsuru Go
  • Ken-ichi Takano
  • Makoto Kurose
  • Tsuyoshi Ohkuni
  • Jun-ichi Koizumi
  • Ryuta Kamekura
  • Noriko Ogasawara
  • Tomoyuki Masaki
  • Jun Fuchimoto
  • Kazufumi Obata
  • Satoshi Hirakawa
  • Kazuaki Nomura
  • Takashi Keira
  • Ryou Miyata
  • Nobuhiro Fujii
  • Hiroyuki Tsutsumi
  • Tetsuo Himi
  • Norimasa Sawada
چکیده

The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sealing the ducts

The transitional epithelium lining the ducts of various glands such as salivary and mammary glands, and organs such as liver, pancreas, kidney and lung must bear a permeability barrier as they are in direct contact with the hostile environment in the lumen. The barrier function of pancreatic ductal epithelium is essential for preventing the back flux of proteases, lipases and DNAases from the p...

متن کامل

Development of intercellular junctions in the pulmonary epithelium of the foetal lamb.

The integrity of epithelial tight junctions in foetal mammalian lungs is essential to maintain the unique ionic composition of lung liquid, and to prevent leakage of serum proteins into peripheral air spaces. In the present study the development of intercellular junctions of the lining epithelium of foetal lamb lungs during gestation was examined by light and electron microscopy. Both thin sect...

متن کامل

Role of tight junctions in signal transduction: an update

Tight junctions (TJs), which are the most apically located of the intercellular junctional complexes, have a barrier function and a fence function. Recent studies show that they also participate in signal transduction mechanisms. TJs are modulated by intracellular signaling pathways including protein kinase C, mitogen-activated protein kinase, and NF-ϰB, to affect the epithelial barrier functio...

متن کامل

Hypertonic saline increases tight junction permeability in airway epithelium.

Asthmatics are known to react to inhaled hyperosmolar solution. Therefore, the effect of hyperosmolar salt solutions on tight junctions of the airway epithelium was investigated by electron microscopy. Rat trachea was perfused with different concentrations of sodium chloride (NaCl) and then fixed from the luminal side with glutaraldehyde to which the electron dense tracer lanthanum chloride had...

متن کامل

Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry.

The limitations of adeno-associated virus (AAV)-mediated vectors for lung-directed gene transfer were investigated by using differentiated human respiratory epithelium in air-liquid interface cultures. Transduction efficiency was high in undifferentiated cells and was enhanced in well-differentiated cells after basolateral application of the vector or after apical application following disrupti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013